
NASA/CR-2000-209851

ICASE Report No. 2000-4

Towards a Customizable PVS

Gerald Liittgen and C_sar Mu_oz

ICASE, Hampton, Virginia

Ricky Butler, Ben Di Vito, and Paul Miner

NASA Langley Research Center, Hampton, Virginia

January2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for

NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed lbrmal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensivc analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, proiects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

Email your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA Access

Help Desk at (301) 621-0134

Phone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2000-209851

ICASE Report No. 2000-4

Towards a Customizable PVS

Gerald Liittgen and C_sar Mu_oz

ICASE, Hampton, Virginia

Ricky Butler, Ben Di Vito, and Paul Miner

NASA Langley Research Center, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

January 2000

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover. M D 21076-1320

(301) 621-0390

National Technical Inlk)rmation Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487 -4650

TOWARDS A CUSTOMIZABLE PVS*

GERALD L(_'TTGEN f, CI_SAR MU.'_OZ t, RICKY BUTLER :_, BEN DI VITO_, AND PAUL MINER :_

Abstract. PVS is a state-of-the-art theorem-proving tool developed by SRI International. It is used

ill a variety of academic and real-world applications by NASA and ICASE researchers, for whom tool cus-

tomization and extensibility are becoming increasingly important issues. This paper shows, by referring to

past experiences with several projects and case studies, that the customization features currently offered by

PVS are often insufficient. It also suggests several improvements regarding PVS's customization in the short

run and regarding its extensibility in the long run.

Key words, customization, extensibility, formal methods, PVS, theorem proving

Subject classification. Computer Science

1. Introduction. PVS is a general verification system developed and maintained by the Formal Meth-

ods Group at SRI International [32, 38, 39]. It combines a very rich specification language with a powerful,

interactive theorem prover. The specification language of PVS is based on a classical, but typed, higher-

order logic. The theorem prover integrates decision procedures for several kinds of theories and also allows

one to incorporate user-defined proof strategies to automate the proof process as far as possible. NASA

Langley [8, 30] is a long-time user of PVS, whose experiences with the theorem prover show that it is a

well-performing tool, provided that the application under consideration can be tailored to PVS's problem

solving style. Unfortunately, taih)ring applications is difficult in practice, leading to a desire for tool cus-

tomization and extensibility. This desire is shared by researchers at ICASE [19], whose main interest is

the development of new verification technologies, especially heterogeneous techniques combining theorem

proving, model checking, and type checking.

Customization and extensibility issues within formal specification and verification tools, such ms PVS,

are becoming increasingly important topics in Formal Methods research and technology transfer. The reason

is that only tools with a high degree of flexibility and automation can cope with the complexity of today's

digital systems and with the usability requirements imposed by hardware and software engineers. The main

arguInents for powerful customization and extensibility within PVS concern aspects of tool integration as

well as tool specialization. A tight integration of PVS with external tools and environments would ena/)le the

use of specialized decision procedures within PVS, such as for model checking various temporal and modal

logics or for reasoning about regular languages. Vice versm other formal and informal tools for the design

and analysis of digital systeIns could profit from PVS's elegant specification language and from its theorem-

"This work was supported bv the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046

while the first two authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research (:enter, Hampton, VA 23681-2199, USA. This paper was presented at the PVS User Group Meeting

held in conjunction with the V¢orld Congress on Formal Methuds in the 1)evelopment of C,omputing Systems (F.NI '99) in

Toulouse, France, September [999.

tlnstitute for Computer Applications in Science and Engineering ([C'ASE), Mail Stop 132(2, NASA Langley Research Center,

Hampton, VA 23681-2199, USA, e-mail: {luettgen, munoz}(_icmse.edu.

,t Assessment Technology Branch,]k,iail Stop 130, NASA Langley Research Center, Hampton, VA 23681-2199, USA, e-mail:

{r.w.butler, b.l.divito, p.s.miner}_larc.nasa.gov.

proving capabilities. However, in order to encourage engineers to apply formal specification and verification

techniques, verification tools must become an integral part of engineering environments, such as UML tools

ill software design and VHDL tools ill hardware design [7, 21]. Beside this aspect of tool integration, another

desirable feature of verification tools is their specialization to particular problem domains. Naturally, this

breaks down to two issues: (i) the specialization of the prover language in order to allow the interfacing of

different specification languages to the verification tool under consideration, and (ii) the specialization of the

prover itself, e.g., via user-defined proof strategies.

This paper first gives an overview of the current customization features in PVS. By referring to four case

studies conducted by the authors, it is shown that these features are often insufficient to tailor PVS to some

interesting academic a_ld real-life applications. In addition, matters regarding extensibility seem to have

been largely ignored during the development of PVS. After a detailed analysis of the underlying issues, this

paper then develops several suggestions on how PVS's customization features can be significantly improved

in the short term. These suggestions concern the mechanism and language for writing proof strategies, as

well as syntactic and semantic aspects of the PVS language. This paper also elaborates on a vision for a

next-generation PVS which asks for tool extensibility, and, thereby, carries the idea of tool customization

one step further. Please note that some of the observations and suggestions made in this paper have also

been reported by other researchers, and that the developers of PVS at SRI International are partially aware

of them for quite some time.

The remainder of this paper is organized as follows. The next section gives an overview of the verification

system PVS and its key components. It also surveys the customization features supported in PVS today.

Section 3 illustrates our past experiences with custonlization issues in PVS, while Section 4 presents and

discusses several suggestions on how to improve customization. The final section contains some remarks on

tool extensibility and our concluding thoughts.

2. PVS: An Overview. The abbreviation PVS stood originally for Prototype Verification System,

as the tool was conceived as a prototype for research on formal verification technology. The design of

PVS was shaped by experience with the development of specification languages and theorem provers in the

late Seventies and in the Eighties. In particular, PVS borrows from an earlier system developed at SRI

International, the EHDbl theorem prover [23, 42]. PVS is implemented in Lisp [44] using the Common Lisp

Object System [10] and was first publicly released in 1992; the most current release is Version 2.3. Over the

years, PVS matured from a prototype to a robust and powerful formal specification and verification system.

It is used by inany researchers and engineers in academic and industrial sites to attack complex problems

in a broad spe(:trum of application domains [38], including software systems [14], hardware systems [13],

and embedded systems [12]. Aspects under investigation ranged from safety criticality [11], over fault

tolerance [26], to human-computer interaction [22]. The architecture of PVS, schematized in Figure 2.1,

reflects that PVS is mainly used as an interactive system. The interface to the system has a textual and

cominan(l-line h)rm and is built on top of GNU's editor Emacs [43]. At this level, the user writes formal

specifications that are then interactively analyzed either by the type checker and the proof checker, or

animated using the ground evaluator.

Formal specifications are structured in so-called theories, which corresl)ond to modules in programming

languages [34]. During the initialization of PVS, a special, predefined theory, which is referred to as prelude

and includes basic definitions, axioms, and propositions, is autonmtically loaded. A theory is an arrangement

of declarations of matimmatical and logical objects, such as types, (higher-order) functions, axioms, and

 ypechecke IP fchecke IOroundeva'uator
Specification language prelude& theory

Emacs interface

FIG. 2.1. Schematized architecture of PVS

theorems. Theories can be parameterized by mathematical objects, and they can in turn be imported by

other theories. Tile specification language of PVS is based on classic higher-order logic, i.e., functions are

first-class objects and quantification over general objects is supported. However, the language is enriched with

an expressive type system and also supports operators known from functional programming languages [25],

such as conditionals, local declarations, first-class functions, as well as record and function overriding.

The PVS language is strongly typed, i.e., objects need to be explicitly declared with their types [34].

Types supported by the system include reals, rationals, integers, strings, records, tuples, functions, tables,

sets, and abstract data types. Tile type system also possesses two very powerful features, namely dependent

types and subtypes, which are worth a closer look [41].

• Dependent types, e.g., dependent record types: A record type R having fields fl,.-- ,fn of types

T1 ,T,_ may be declared by R : TYPE = [# fl : T1 ,fn : T,_ #]. Here, each type Ti may

depend on the fields fl,.-- , fi-l.

• Subtypes: If T is a type and P a predicate on T, then N : TYPE = {x:T I P(x)} declares a new

type N whose elements belong to the largest subset of elements of type T that satisfy P.

Although subtypes and dependent types are very convenient to write specifications, they make type checking

undecidabte. PVS copes with this problem by generating type corTectness conditions (TCCs), i.e., proposi-

tions that, when discharged by the user, guarantee type consistency. For example, when subtyping is used,

a TCC is generated which states that the introduced subtype must not be empty, i.e., an object of the

considered subtype must exist.

7.Existence TCC generated for N: {x:T I P(x)}

X_TCCI: OBLIGATION EXISTS (N: {x:T I P(x)}): TRUE;

In practice,TCCs can often be dischargedautomatically by using proof automation toolsprovided by the

system. The richtype system enablesone to encode partialfunctions,which areper defaultnot supported in

PVS, by restrictinga function'sdomain appropriatelyusing subtyping.Moreover, the type system alsoallows

the sound support of recursivefunctions. More precisely,each recursivefunction declarationmust include

a termination argument. The type checker then generatesa TCC statingthat the terminationargmnent is

valid,i.e.,itgivesriseto a well-foundedrelation.

The [)roofchecker[35]included in PVS isalsointerfacedto the Emacs editor.Itconstantlydisplaysthe

currentproofstateinform ofa proofseqnent.Sequents may then be simplifiedby inputtingproofcommands.

which may he considered as basic stepsin the proof-constructionprocess. PVS conieswith a very rich set

of proof commands that are concerned with equalityreasoning,logicalreasoning,and arithmeticreasoning.

Basic proof commands deal with, e.g.,skolemnization,case-splitting,or simplification.The system also

provides a mechanism for writing proof ,strategies, i.e., proof scripts which are intended to increase the

degree of automation within the theorem prover [35]. Strategies need to be written in Lisp and may use

pre-definedproofcombinators,e.g.,choice,sequencing,or iteration.Someinteresting[)roofstrategiesare
alreadydeliveredwithPVS,includingthestrategytcc specializedat dischargingtypecorrectnessconditions
andtile verypowerfulstrategygrind whichcombineslogicalandarithmeticsimplificationsin anintelligent
manner.Tileproofcheckeralsointerfaceswith decisionproceduresexternalto PVS,suchasfor temporal
logics[15]andmonadicsecond-orderlogic[17].

It is worthmentioninga featurewhichwasintroducedwith the currentreleaseof PVS,namelythe
ground evaluator [36]. This component allows PVS ground expressions, i.e., executable definitions applied to

concrete data, to be evaluated via compilation into Lisp. The efficiency of the obtained Lisp code crucially

depends on the identification of situations of non-shared access to variables. This is done by static analysis

techniques. Although ground evaluation is a first step towards animating specifications, the executable

subset of the PVS language should be increased to handle certain kinds of symbolic evaluations in a future

release of the tool.

Regarding tool customization, there exist currently two customization features in PVS other than the

ability to provide user-defined proof strategies. One rudimentary feature uses environment variables for

allowing a person to work with a text editor different from Emacs, for running the tool in batch mode,

and for deciding which set of decision procedures to use. The other more powerful feature is the library

concept which supports one in arranging theories and adding them to the system, e.g., integrating a theory

for reasoning about graphs [9]. However, many key features in the current release of PVS are still fixed and

cannot be customized. This especially concerns the PVS language, including its syntax and semantics, the

type checker, asld tile type correctness conditions.

3. Past Experiences with Customization in PVS. In this section, we examine four academic

and real-world CaSK studies which we conducted in the past using PVS and which required us to employ

PVS's customization features. Together the case studies cover most aspects of tool customization, including

user-defined proof strategies, as well as syntactic and semantic issues of the PV5 language.

3.1. Case Study: SAFER. The first case study, which involves the analysis of an embedded controller

for NASA's Simplified Aid for E'__ Rescue (SAFER), aims at exploring the limits of proof automation via

semi-custom proof strategies. SAFER is a backpack propulsion system for free-floating astronauts, intended

as a self-rescue device. It uses 24 gaseous-nitrogen thrusters to achieve six degree-of-freedom maneuvering

control. Propulsion is available either on demand, i.e., in response to hand controller inputs, or through an

automatic attitude hold (AAH) capability.

SAFER requirements were previously formalized using PVS during a NASA pilot project in formal

methods, details of which appear in the appendix to a NASA guidebook [29]. In a nutshell, the SAFER

system was specified as a state machine within PVS, and its properties of interest were encoded as system

invariants which were proved by induction on the length of paths. A set of five property classes was identified,

with matching proof schemes later devised. After refining the PVS proof strategies, fully automatic proofs

of 42 model properties were obtained. Many properties were expressed as a "hold-until" formula, where an

invariant holds over each sequence of states bracketed by the earliest occurrences of a trigger condition and a

termination condition [12]. An example of the custom proof strategies is shown below, where "state-tran"

is provided to prove baSic state transition formulas.

(defstep state-tran (&optional (exp-fnums +) rewrites)

(let ((auto-rewr (cons 'auto-rewrite (append rewrites (constant-rewrites)))))

(then (skosimp*)

auto-rewr (assert)

(split-disjunctions*)

(expand-rec-desc exp-fnums)

(general-rewrites)

(ground) (lift-if)

(grind)))

"(state-tran): prove state transition properties by expansion, replace _ hide, grind."

"-_,Invoking state transition property strategy")

The sample property shown below is a direct expression of the following requirement: "Once AAH is turned

off for a rotational axis, it remains off until a new AAH cycle is initiated."

rot_axis_stays_off : LEMMA

hold_until (

LAMBDA s : toggle (AAH_state (s)) = AAH_on AND NOT active_axes (AAH_state (s)) (r),

LAMBDA s: NOT active_axes(AAH_state(s))(r),

LAMBDA s: toggle(AAH_state(s)) = AAH_started,

inputs)

Here, the three lambda expressions,parameterized with a state variable_specifythe trigger,hold, and

until-conditions, respectively.

Although custom proof strategies worked well in this case study, the PV5 user community would benefit

from greater insight into tile prover's mechanisms. In order to implement more elaborate strategies that

take function and lemma declarations into account, access to user theories would be needed. Since proof

strategies, in our point of view, provide the key for making formal techniques attractive to engineers, they

should be made as powerful and convenient as possible.

3.2. Case Study: Rewriting for User-defined Congruences. The second case study was devoted

to developing rewriting support for user-defined congruences in PVS. The PVS language provides an abstract

datatype mechanism [33] for defining new languages whose syntax is given in Backus-Naur Form (BNF).

The semantics of a variety of languages, such as process algebras [5], is often defined via a behavioral

congruence. While these congruences may be specified in PVS's higher order logic, the prover does not

support rewriting for them. In fact, PVS's abilities for equational reasoning are limited to rewriting regarding

the tool's built-in notion of equality. This is in contrast to many other theorem t)rovers, such as HOL [16]

and Isabelle [37], which provide a means for soundly introducing rewriting with respect to equations on

user-defined congruences, hi order to circumvent this shorteolning of PV5, researchers have embedded

process-algebraic languages in PV5 using uninterpreted types [4]. Although this apt)roach opens the door for

using the prover's built-in equality and its rewriting machinery, it forces one to sacrifice the most powerflll

proof principle supported by theorem provers, namely structural induction.

Our approach to the problem was based on providing a simple, customized, and conservative proof

strategy for automating a single rewriting step with respect, to a given congruence. In essence, our proof

strategy, which is supposed to be apt)lied to the sequent containing tile t.erln t.o be rewritten, only uses tile

transitivity property and the compositionality proI)erty of congruences. Est)ecially. the strategy does not

rely on uninterpreted PV5 terms but works with PVS's abstract datatypes instead. The rewriting rule to be

considered must be given as a lemma in PVS an(| serves as an argument to our strategy, which is defined as

follows:

(defstep context-rewrite (equation)

(then

(use "transitivity")

(hide 2)

(use equation)

(forward-chain "congruence")

(hide -2)

(inst -1 extract-context)

(auto-rewrite "subst")

(assert)

(stop-rewrite "subst")

(inst?)

(assert)

(hide - 1))

"Poor man's rewrite"

,,1,)

Here_ transitivity and congruence are lemmas in PVS stating the transitivity and congruence property

with respect to the considered congruence, respectively, and subst is a function which substitutes a context

variable (a context is a term with a designated free variable) by a concrete term. Our strategy also requires

the extraction of contexts in order to get to the subterm to which the rewrite rule equation should be

applied. As with substitutions, extracting contexts is an easy exercise which can be performed by a function

that is inductively defined along the structure of terms. Unfortunately, any specification of such a function

needs to employ syntactic equality and, thus, cannot be implemented within the PVS language. Hence, the

function extract-context for extracting contexts is directly defined in Lisp and uses a notion of syntactic

equality which is defined internally within the PVS system. Although its definition is specific to the abstract

datatype to which the considered term belongs, it can be automatically generated whenever an abstract

datatype definition is introduced to PVS. However, tile choice of a context may not be unique in the first

place, since a rewrite rule may be instantiated in several ways with respect to a given term. Thus, either user

guidance or the application of adequate heuristics is required. Since the techniques for term instantiation do

,lot depend on the specific congruence under consideration, it should be possible to re-use the sophisticated

pattern nmtching routines for PVS's built-in notion of equality, which are implemented as Lisp functions

within the system.

Unfortunately, the poor documentation of the internals of the PVS system prohibited us from re-using

existing routines for pattern matching and term instantiation. As final consequence, we did not meet our

objective, namely to develop support for rewriting with respect to user-defined congruences in PVS.

3.3. Case Study: Integration of the B-Method. Although PVS is a rich tool for the analysis of

formal specifications, it (toes not come with a built-in inethodology for system development. In contrast,

other tools include well-developed methodologies, such as the B-method [2], but provide very limited proof

automation. Hence, the question arises whether, e.g., the B-method can be embedded in PVS in an elegant

and cost-effective way.

The B-method is a state-oriented method which covers the complete life cycle of software development.

It provides a uniforin language, the Abstract Machine Notation, to specify, design, and implement software

systems. A specification in B is composed of a set of modules which are referred to as (abstract) machines.

Syntactically, a machine consists of several clauses which determine its static and dynamic properties. For

instance, the VARIABLE clause includes a set of variables that defines tile state vector of the machine, the

INVARIANT clause constrains the domain of states, and the 0PERhTIONS clause defines how states may be

modified. The embedding of tile B-method in PV5 was done structurally [28], i.e., tile expression language of

B and tile underlying logic of the abstract machine notation were encoded using the PV5 language and the

higher-order logic of PV5, respectively. More precisely, a front-end tool, called PB5 [27], was ilnplemented

which supports the abstract machine notation in PV5. PB5 works similar to a compiler as it takes an input

file containing an abstract machine description and generates as output the correspomting embedding in the

form of a PV5 theory. This was necessary since PV5 does not provide the possibility to extend the syntax

of its specification language to accommodate the B-notation. When compiling a theory generated by P85,

the type checker of PVS generates type checking constraints. These correspond to proof obligations which

assure soufldness requirements of the machine under consideration, e.g., one proof obligation being that the

machine's operations preserve the given invariant.

Tile semantic encoding of the B-method in PVS's higher-order logic maps machine states into a record

type State, whose fields are the variables of the considered machine [6]. Machine invariants are introduced

as a constraint predicate Invariant on State:

Invariant: [State -+ bool] = invariant

InvariantState: TYPE = {s:State I Invariant(s)}

where invariant is the invariant of the considered machine. Operations are then described by generalized

substitutions, a semantic structure that includes a before-after relation between states, a pre-condition pred-

icate, and a constraint which imposes the relation on states not violating the pre-condition. Generalized

substitutions may be specified in PV5 as follows:

Transition: TYPE = [# pre: [State -+ bool], rel: [[State,State] -+ bool] #]

Constraint: [Transition -+ heel] =

LAMBDA (tr:Transition): (FORALL (el,e2: State) (NOT tr'pre(el)) _ tr'rel(el,e2))

GeneralizedSubstitution: TYPE = {tr:Transition I Constraint(tr) }

A transition between states isimplemented as a record type Transition containing a pre-condition predicate

pre and a before-after relation rel. Only transitions satis_'ing predicate Constraint are considered to be

generalized substitutions, i.e., GeneralizedSubstitution: TYPE = {tr:Transition I Constraint (tr) }.

As an example of a generalized substitution, consider tile so-called assignment substitution x,, ... ,x, :=

el , e,, which is encoded as

ASSIGN(f :[State --_ State]) : GeneralizedSubstitution =

(# pre := TRUE, rel := LAMBDA (el,e2: State): e2 = f(e2) #)

where f is the function satisfying f(xi) = ei, for 1 < i < re, and f(x) = x, otherwise. Please note that the

encoding is constructed in a way that soundness of machines maps to type correctness.

Summarizing, alttmugh the B-machine syntax could not be integrated directly in the PV5 language,

the encoding of its semantics could be done conveniently. The latter is due to the expressive type system

of PV5. In fact tile above encoding of machines makes use of subtypes and depen(tent types. However,

type-system features absent in PV5 could have simplified this task. As an example consider the situation

where one machine imports other machines. Here, the state of the importing machine includes the states of

tim imported machine and their operations. This could have been elegantly expressed using record subtyping.

Moreover, the proposal in [6] of a new operator for parallel substitution in the B-method suggests tile utility

TABLE 3.1

Evaluation o] the customization features used in the case studies

Proof Language Language

strategies syntax semantics

SAFER, good n/a n/a

Process algebra poor fair poor

B-method poor fair good

DDD good poor poor

of general polymorphism in PVS. Last, but not least, it should be mentioned that specialized proof strategies

for automatically discharging certain proof obligations, which arise during the translation of B-machines

into PVS, were considered in [6]. Since the above-presented encoding strongly relies oil PVS's type system,

proof strategies would have required access to terms, types, and the type-checker. Although this access

partially exists in form of internal Lisp functions of PVS, the lack of documentation let the attempt to write

customized proof strategies fail.

3.4. Case Study: Support for the DDD-Method. In the fourth case study, we have studied

how Digital Design Derivation (DDD) techniques, which provide a solid foundation for digital hardware

design [20], can be combined and enhanced with the deductive capabilities of PVS [26].

Since design derivation semantics in hardware is based oil mutually recursive stream equations, a PVS

library defining a shallow embedding of stream equations was developed [18]. The stream library is modeled

after PVS's abstract datatype mechanism, i.e., streams are encoded as an abstract co-datatype over an

uninterpreted non-empty type constrained by axioms. The stream library provides support for co-recursive

function definition and proof by co-induction. Strategies were developed in order to simpli_, the handling of

proof obligations related to stream definitions azld to partially automate proofs by co-induction. Moreover,

multiple levels of interaction between design derivation and PVS were explored. The requirements for the

design derivation are expressed in the PVS language. Algorithms satisfying ttm requirements are verified

in the proof system of PVS and, then, are translated into a behavioral specification for a design derivation

tool. Within such a tool, the behavioral description is refined into a concrete design. Refinements outside

the scope of the derivation tool, e.g., regarding circuit optimizations that require sophisticated behavioral

reasolfing, are justified externally in PVS.

The approach described here has been illustrated by means of two significant examples, namely a fault-

tolerant clock-synchronization circuit and an architecture for floating-point division. The examples show

that PVS can be used effectively as a verification engine supporting DDD. However, limitations of PVS

were experienced, both semantically and syntactically. From a semantic point of view, a shallow embedding

reduces the potential to verify" meta-results of the encoded theory. This is even worse in PVS, since the type

systeln does not allow quantification over types. For instance, our embedding uses PVS tuples to represent

tuples of the hardware design language, but properties concerning all tuple types cannot be expressed in

our embedding. From a syntactic point of view, we were unable to create the desired syntactic forms for

declaring abstract co-datatypes, since the PVS language cannot be extended. Thus, a significant portion of

the development consisted of repeatedly creating declarations of lemmas in the specific form necessary for

the correct operation of the strategies. A macro definition facility would have eased this task considerably.

3.5. Summaryof Experiences.Table3.1summarizesandevaluatesourexperiencesregardingthe
customizationfeaturesof PVS,includingproofstrategiesandthesyntaxandsemanticsof thespecification
language.Thecurrently most useful feature to us is PVS's mechanism for custom proof strategies, although

this mechanism would benefit from a better documentation and although it should provide (easier) access

to tile proof sequent and the prover itself. Regarding the PVS language, it is fair to say that although tile

language is very expressive, it does not support a means for customization and extensibility, syntactically

as well as semantically. This is a major drawback for PVS, especially when compared to other ttmorem

provers, such as HOL [16], Isabelle [37], and Coq [3]. All of them allow the user to modify and extend their

specification languages, as needed.

Gaining theorem proving skills takes a large training investment. For formal specification and verification

to enter common practice, high levels of proof automation are needed, as well as the ability to interface prover

tools to languages and methodologies which are well-known to engineers. The lessons learned from the above

case studies have demonstrated that issues of tool customization and extensibility are extremely important for

the success of theorem provers in the engineering world, as welt as for basic academic research in verification

technology.

4. Enhancing Customization in PVS. Customization in PVS can be improved at different levels.

In this section, we elaborate, component by component, on suggestions aiming towards a more customizable

PVS. x3,% hope that this contributes to the ongoing discussion within the PVS community about how to

achieve greater customization and extensibility. The only component of PVS, we are completely happy

with, is its Emacs interface. Emacs is widely known as a customizable and extensible editor which provides

a nice integration of PVS with a variety of other applications ranging from authoring tools to Internet

applications [43].

4.1. Specification language. As mentioned above, the specification language of PVS is essentially a

strongly typed functional language enriched with operators taken from higher-order logics, such ms quantifiers

over general objects [34]. However, the language is not only targeted towards axiomatic and declarative

specification styles, but it is expressive enough to encode other styles, including algebraic specifications [33],

tabular specifications [31], and operational specifications [31].

The support for algebraic and tabular specifications in PVS, however, is particular. These kinds of

extensions require modifications to the grammar of the PVS language, and a deep knowledge of the PVS

internals, which is currently only available to developers at SRI International but not to the tmblic research

comnmnity. In view of the fixed grammar of the PVS language, the support of a new syntax usually

requires the development of an external parser, such as PBS [27] in case of the abow_ mentioned B-method.

Additionally, superficial string manipulation may be wired at the Emacs level. Unfortunately, these solutions

are far from optimal since they' suggest the need for deeompilers, which are known for being hard to develop.

Alternatively, one may deal with compiler-generated encodings. Since sueh encodings hardly reflect the

original specifications, their formal analyses are difficult. Macro expansions would be a simple way to mimic

the syntax of external languages. In PVS they should be implemented in a way that the components of

the system can refer back to the unexpanded language. Therefore, users would not have to change notation

when switching back and forth between PVS and other tools.

Another challenging issue is the development of a mechanism to describe sub-languages of PVS. For

instance, it might be helpful to restrict the specification language to consider only (i) finite types, in order to

beabletodetectwhen,e.g.,modelchecking[15]maybeapplicable,(ii) strategyconstructs,whenintegrating
thestrategylanguagewithinthePVSlanguageaswillbediscussedinSection4.3,(iii) anexecutablefragment,
e.g.,for drivingsinmlations,or (iv) adecidabletheory,whichmayallowoneto usemoreefficientdecision
procedures.An implementationofthismechanismvia thetypecheckerissuggestedin thenextsection.

4.2. Type Checker. Extensions to the type checker of [VS, and in general to the type system, raise

very delicate questions about the semantics of the system [35, 41]. For example, a naive extension of

subtyping to consider record subtyping, such that fields may be added to records in the sense of object-

oriented inheritance mechanisms, could render the system inconsistent. Indeed, the current set-theoretic

semantics of PVS types, where subtypes have the meaning of subsets, is incompatible with most of the

semantic approaches to inheritance in object-oriented languages [1, 24]. An intermediate solution to record

inheritanc_ in PVS is possible via the CONVERSION operator included in the [VS language. A conversion is

a function that casts objects from one type to another. Conversions can be declared I)y the user, and the

prover automatically uses them whenever necessary. However, as this latter mechanism is not controlled by

the user, surprising errors may occur.

Polymolphism in PVS is limited to parameterization of theories, e.g., the theory "generic [T:TYPE] :

THEORY BEGIN ... END generic" specifies a family of theories with respect to the abstract type T. However,

the declaration "polymorphism(T:TYPE):A = ... " is not admitted by the system. We are not aware of

the technical implications of general polymorphism in the type theory of the system, but this feature would

be very handy in order to elegantly integrate other notations in PVS. In fact, semantic embeddings usually

require meta-level encoding, for which polymorphism is a prerequisite.

Since constraining a theory is sad with respect to consistency, adding constraints to the PVS language

might be useful to apply specialized algorithms on certain domains. For example, the type checker could be

parameterized such that fragments of the language are recognized. Finally, the mechanism, which uses the

type checker to automatically discharge type checking conditions, should be controllable by the user.

4.3. Proof Checker & Ground Evaluator. In order to write more powerful proof strategies, well-

documented access to the proof context and the proof environment is needed. The proof context includes

terms, types, sequents, theories, and type ctmcking conditions, with currently only the access to proof sequents

1)eing documented [35]. Types contain information that can be helpful to decide which decision procedures

are applicable in the considered proof situation. Access to theories is sometimes needed for looking up the

availability of lemmas, and access to type checking conditions might allow one to automatically discharge

them as they arise. The proof environment includes decision procedures, the theorem prover, and the type

checker. Decision procedures need to be accessible if one wants to write, e.g., specialized versions of the

strategy grind. In order to be able to interface PVS to external tools, the theorem prover itself must be

accessible. Access to the type checker is needed when creating new PVS terms within proof strategies, such

that new terms (:an be safely introduced to the prover. Finally, for the strategy language one might think of

two advancements over the current speed-efficient standard which uses Lisp functions. A more elegant and

still efficient solution would be to provide an Application Programming Interlace (API), such that external

languages can be used for writing strategies. Thus, the PVS prover would become controllable from external

tools. The most elegant solution, which also addresses the question of soundness of proof strategies, would

t)e to include the strategy language within the PVS language by introducing new language constructs and

some pre-defined fnnctions.

10

Regardingthesupportfor rewritingwith respectto user-definedcongruences,usercontrolofhowthe
rewritingmachineryandespeciallythepatternmatchingalgorithmworkis required.Thismayalsohelp
to avoidtheproblemof brokenproofswhenupgradingto newerversionsof PVS.In orderto achievethis
goal,eitherdocumentedaccessto the internalsof PVSmustbegrantedor,ideally,PVSneedsto allowone
theinstallationof rewriterulesparameterizedwith thespecificcongruenceforwhichthoserulesarevalid.
Moreover,in thecaseofuser-definedcongruences,onealsowishesto addandinvokenewdecisionprocedures
with respectto thecongruence of interest.

Tile ground evaluator introduced with PVS _rsion 2.3 should be considered an experimental feature,

as its final functionality is still under discussion by its developers. Thus, it is too early to make detailed

suggestions for enhancements. However, we hope that the evaluator will be extended to symbolic evaluation

of specifications, i.e., those containing non-concrete data. This would enable the animation of a larger and

more interesting class of specifications. The evaluator, ground or symbolic, should also be integrated with

the other components of the system, namely the PVS language, the type-checker, and the proof-checker;

right now, it is pretty much a stand-alone feature.

5. Conclusions. _,_ conclude by suggesting several short-term and long-term goals for improving

PVS's customization and extensibility, respectively. V_ hope that the PVS developers at SRI International

will adopt some of these goals for future evolutions of their tool.

In the short run, a documentation of the PVS architecture as implemented in Lisp [44] using the Common

Lisp Object System [10], of its interfaces, of its central classes, and of its objects should be provided.

Moreover, an API for accessing the proof context and also the type checker within proof strategies should be

developed. Together, this would enable all PVS users - not only those working at or visiting SRI International

to integrate various formal methodologies in PV$, e.g., for prototypically experimenting with heterogeneous

verification techniques [40]. V_ believe, that the above suggestions will lead to a customizable PVS which

allows for (i) increased automation via sophisticated proof strategies, (ii) tackling formalizations that are

currently prohibited, and (iii) the division of labor for solving real-world verification problems. The latter

point is especially important in practice, since it enables a more efficient conduct of projects by allowing a

cleaner task separation between problem domain experts and PVS prover experts.

External tools

_ PVS core extensions

FIG. 5.1. Architecture of an extensible PV$

A truly extensihle PVS, however, must not only be modular by allowing external tools to access the core

of PVS via suitable APIs for both proof context and proof environment, but it nmst also support language

extensions, syntactically as well as semantically. Each module customizing PVS's language nmst essentially

extend the PVS core and must also provide an API in order for the new flmctionality to become available

externally. An example architecture reflecting these ideas of extensibility is depicted in Figure 5.1. One may

think of even more ambitious architectures, e.g., a more federated one, in which several tools (:all equally

interact with each other. On top of the advantages of a nlodular PVS, an extensible verification systeln has

the ability to take advantage of new theories and techniques as they occur in the field, as well as t.o merge

the best of the many existing Formal Methods technologies.

11

Finally. we would like to mention that we are aware of tile very delicate theoretical and technical issues

behind our proposal. However, a more open PVS architecture is a prerequisite for research groups outside

SRI International for being able to make more useful contributions to the PVS community. While the PVS

language remains powerful and elegant, analysis techniques within the Formal Methods domain are becoming

increasingly heterogeneous, drawing from a wide spectrum of specialized ideas. PVS would make an ideal

flagship, but it cannot be the whole fleet. It would be wise to outfit PVS with a highly flexible means of

('ooperation, so that we all might enjoy a smoother cruise.

REFERENCES

[1] M. ABAD! AND L. CARDELLI, A Theory of Objects, Springer-Verlag, 1996.

[2] ,J.-R. ABRIAL, The B-Book--Assigning Programs to Meanings, Cambridge University Press, 1996.

[3] B. BARRAS, S. BOUTIN, C. CORSES, J. COURANT, J. FILLIATRE, E. GIMENEZ, H. HERBELIN,

G. HUET, C. _Iul_oz, C. _'|URTHY, C. PARENT, C. PAULIN, A. SAYBI, AND B. _VERNER, The Coq

proof assistant reference manual: Version 6.1, Tech. Report 0203, Institut National de Recherche

en Informatique et en Automatique (INRIA), Rocquencourt, France, May 1997.

[4] T. BASTES AND J. HOOMAN, Process algebra in PVS, in Fifth International Workshop on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS '99), R. Cleaveland, ed., vol. 1579

of Lecture Notes in Computer Science, Amsterdam, The Netherlands, March 1999, Springer-Verlag,

pp. 270-284.

[5] J. BER(;STRA, A. POSSE, AND S. SMOLKA, Handbook of Process Algebra, Elsevier Science, 2000. To

appear.

[6] J.-P. BODEVEIX, M. FILALI, AND C. MUi_OZ, A formalization of the B-method in Coq and PVS, in

Electronic Proceedings of the B-User Group Meeting held in conjunction with the World Congress

on Formal Methods (FM '99), Toulouse, France, September 1999, Springer-Verlag, pp. 33-49.

[7] G. BootH, J. RUMBAUGH, AND I. JACOBSON, The Unified Modeling Language User Guide, Object

Technology Series, Addison Wesley Longman, 1998.

[8] R. BUTLER, J. CALDWELL, V. CARRENO, C. HOLLOWAY, P. MINER, AND B. DIVITO, NASA Lan-

gley's research and technology transfer" program in formal methods, in Tenth Ammal Conference on

Computer Assurance (COMPASS '95), Gaithersburg, MD, USA, June 1995.

[9] R. BUTLER AND J. SJOGREN, A PVS graph theory library, NASA Technical Memorandum NASA/TM-

1998-206923, NASA Langley Research Center, Hampton, VA, USA, February 1998.

[10] L. DEM!CHLEL, Overview: The Common Lisp Object System, Lisp and Symbolic Computation, 1 (1989),

pp. 227 244.

[11] B. DI VITO, A forw_al model of partitioning for integrated modular avionics, NASA Contractor Report

NASA/CR-1998-208703, Vfgyan Inc., Hampton, VA, USA, August 1998.

[12] --, High-automation proofs for properties of requirements models, Software Tools for Technology

Transfer, 2 (1999). To appear. Draft paper at http://shemesh.larc.nasa.gov/people/bld/sttt-bld.ps.

[13] B. DI VITO, R. BUTLER, AND J. CALDWELL, High level design proof of a reliable computing platform,

Dependable Computing and Fault-Tolerant Systems, 2 (1992), pp. 279-306.

[14] B. DI VITO AND L. ROBERTS, Using formal methods to assist in the requirements analysis of the space

shuttle GPS change request, NASA Contractor Report NASA/CR-4752, Vfgyan Inc., Hampton, VA,

USA, August 1996.

12

[15] E. EMERSON, Temporal and modal logic, in Handbook of Theoretical Computer Science, J. van Leeuwen,

ed., vol. B, North-Holland, 1990, pp. 995 1072.

[16] M. GORDON AND T. MELHAM, Introduction to HOL, Cambridge University Press, 1993.

[17] J. GULMANN, J. JENSEN, _,I. JORGENSEN, N. KLARLUND, T. I:{AUHE, AND A. SANDHOLM, Mona:

Monadic second-order logic in practice, in First International Workshop oil Tools and Algorithms for

the Construction and Analysis of Systems (TACAS '95), E. Brinksma, W. Cleaveland, K. Larsen,

T. Margaria, and B. Steffen, eds., vol. 1019 of Lecture Notes in Computer Science, Aarhus, Denmark,

May 1995, Springer-Verlag, pp. 58-73.

[18] U. HENSEL AND B. JACOBS, Coalgebraic theories of sequences in PVS, Journal of Logic and Compu-

tation, 9 (1999), pp. 463-500.

[19] ICASE's Formal Methods Program. Home page at http://www.iease.edu/quettgen/iease.

[20] S. JOHNSON, Synthesis of Digital Design firm Recursion Equations, The MIT Press, 1984. ACM

Distinguished Dissertation.

[21] C. D. KLOOS .AND P. T. BaEtJER, eds., Formal Semantics for VHDL, Kluwer, 1995.

[22] G. LII_TTGEN AND V. CARRENO, Analyzing mode confusion via model checking, in Theoretical and

Practical Aspects of SPIN Model Checking (SPIN '99), D. Darns, R. Gerth, S. Leue, and M. Massink,

eds., vol. 1680 of Lecture Notes in Computer Science, Toulouse, France, September 1999, Springer-

Verlag, pp. 120-135.

[23] P. N'IELL1AR-SMITH AND J. RUSHBY, The Enhanced HDM system for" specification and verification, in

Proceedings of the VerkShop III, Watsonville, CA, USA, February 1985, pp. 41-43. Published as

ACM Software Engineering Notes, Vol. 10, No. 4, August 1985.

[24] B. MEYER, Genericity versus inheritance, ACM SIGPLAN Notices, 21 (1986), pp. 391 405.

[25] R. MILNER, M. TOFTE, AND R. HARPER, The Definition of Standard ML, MIT Press, 1991.

[26] P. MINER, Hardware Verification using Coinductive Insertions, PhD thesis, Indiana University, Bloom-

ington, IN, USA, June 1998.

[27] C. Mu_oz, PBS: Support for the B-method in PVS, Tech. Report SRI-CSL-99-01, Computer Science

Laboratory, SRI International, Menlo Park, CA, USA, February 1999.

[28] C. Mu_oz AND J. RUSHBY, Structural embeddings: Mechanization with method, in World Congress on

Formal Methods (FM '99), J. Wing, J. Woodcock, arid J. Davies, eds., vol. 1708 of Lecture Notes

in Computer Science, Touh)use, France, September 1999, Springer-_rlag, pp. 452 471.

[29] NASA OFFICE OF SAFETY AND MISSION ASSURANCE, Formal Methods Specification and Analysis

Guidebook for" the Verification of Software and Computer Systems, l/blume H: A Practitioner's

Companion, Washington, DC, USA, May 1997. NASA-GB-001-97. Release 1.0. Available at

htt p://eis.jpl.nasa.gov/quality/Formal-Methods.

[30] NASA Langley's Formal Methods Program. Home page at http://shemesh.larc.nasa.gov/fm.

[31] S. OWRE, J. RUSH_Y, AND N. SHANKAR, Analyzing tabular and state-transition requirements speei-

fications in PIe'S, NASA Contractor Report NASA/CR-97-201729, SRI International, Menlo Park,

CA, USA, July 1997.

[32] S. OWRE, J. Rt:SrtBY, N. SHANKAR, AND F. VON HENKE, Formal verification for" fault-tolerant sys-

tents: Prolegomena to the design of PVS, IEEE Transactions on Software Engineering, 21 (1995),

pp. 107 125.

[33] S. OWRE AND N. SHANKAR, Abstract datatypes in PVS, NASA Contractor Report NASA/CR-97-

206264, SRI International, Menh) Park, CA, [;SA, November 1997.

13

[34] S. OWRE, N. SHANKAR, J. RUSHBY, AND D. STRINGER-CALVERT, PVS Language Reference, Com-

t)uter Science Laboratory, SRI International, Menlo Park, CA, USA, September 1999. Available at

ht tp :/ / t)vs.csl.sri.com / manuals.html.

[35] --, PVS Prover Guide, Computer Science Laboratory, SRI International, Menlo Park, CA, USA,

September 1999. Available at http://pvs.csl.sri.com/manuals.html.

[36] --, PVS System Guide, Computer Science Laboratory, SRI International, Menlo Park, CA, USA,

September 1999. Available at http://pvs.csl.sri.com/manuals.html.

[37] L. PAULSON, Isabelle: A Generic Theorem Prover, vol. 828 of Lecture Notes in Computer Science,

Springer-Verlag, 1994.

[38] PVS bibliography. Available at http://pvs.csl.sri.com/applications.html.

[39] PVS specification and verification system. Project page at http://pvs.csl.sri.com.

[40] J. RUSHBY, Integrated formal verification: Using model checking with automated abstraction, invariant

generation, and theorem proving, in Theoretical and Practical Aspects of SPIN Model Checking

(SPIN '99), D. Dams, R. Gerth, S. Leue, and M. Massink, eds., vol. 1680 of Lecture Notes in

Computer Science, Toulouse, France, September 1999, Springer-Verlag, pp. 1 11.

[41] J. RUSHBY, S. OWRE, AND i. SHANKAR, Subtypes for specifications: Predicate subtyping in PVS,

IEEE Transactions on Software Engineering, 24 (1998), pp. 709-720.

[42] J. RUSHB',', F. VON HENKE, AND S. OWRE, An introduction to formal specification and verification

using EHDM, Tech. Report SRI-CSL-91-2, Computer Science Laboratory, SRI International, Menlo

Park, CA, USA, February 1991.

[43] R. STALLMAN, GNU Emacs Manual, Free Software Foundation, 1997.

[44] G. STEELE .JR., Common Lisp: The Language, Digital Press, Bedford, MA, USA, 1990.

14

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publicreporting burdenfor this collectionof information is estimated to averaget hourper response,including the time for reviewinginstructions, searchingexistingdata sources,
gatheringand maintaining the data needed,andcompletingand reviewingthe collectionof information. Sendcommentsregarding thisburden estimate or anyother aspectof this
collectionof information,including suggestionsfor reducingthis burden, to Washington HeadquartersServices,Directorate for Information Operationsand Reports, 1215 Jefferson
Davis Highway,Suite 1204, Arlington, VA 22202-4302,and to the Office of Management and Budget, PaperworkReduction Project (0704-0188)r Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

January 2000

4. TITLE AND SUBTITLE

Towards a customizable PVS

6. AUTHOR(S)

Gerald Liittgen, C6sar Mufioz, Ricky Butler

Ben Di Vito, and Paul Miner

,7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

hlstitute for Conlputer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-2199

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hanlpton, VA 23681-2199

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2000-4

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2000-209851

ICASE Report No. 2000-4

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

Presented at the PVS User Group Meeting, World Congress on Formal Method_, (FM'99).

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

PVS is a state-of-the-art theorem-proving tool developed by SRI International. It is used in a variety of academic

and real-worht applications by NASA and ICASE researchers, for whonl tool customization and extensibility are

becoming increasingly important issues. This paper shows, by referring to past experien('es with several projects and

case studies, that the customization features currently offered by PVS are often insufficient. It also suggests several

improvements regarding PVS's customization in the short run and regarding its extensibility in the long run.

14. SUBJECT TERMS

customization, extensibility fl)rmal inethods, PVS, theorem proving

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

YSN 7540-01-280-5500

18. SECURITY CLASSIFICATION lg. SECURITY CLASSIFICATIOI_

OF THIS PAGE OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

19

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Foem 298(Rev. 2-8g)
Prescribedby ANSI Std. Z39-18
298 102

